2006 AIChE Annual Meeting
(401f) New Finite Element Formulations for Viscoelastic Fluid Flows
Authors
In the first formulation, the four-field Galerkin/Least-Squares (GLS4) stabilized finite element method is presented. This method yields linear systems that can be solved easily with iterative solvers (e.g., the Generalized Minimum Residual method), and also allows the use of equal-order interpolation functions that can be conveniently and efficiently implemented on modern distributed-memory cache-based clusters. The governing equations are converted into a set of first-order partial differential equations by introducing the velocity gradient as an additional unknown. Thereby four unknown fields---pressure, velocity, conformation, and velocity gradient, are solved using linear shape functions. It is shown that the mesh-convergence of the proposed method is comparable to the state-of-the-art DEVSS-TG/SUPG method and yields accurate results at lower computational cost.
The second formulation---the log-conformation formulation--- replaces the conformation tensor unknown by its logarithm. This guarantees the positive-definiteness of the tensor given by its physical nature, and it is able to capture sharp elastic stress boundary layers. The implementation presented in literature thus far requires changing the evolution equation for the conformation tensor into an equation for its logarithm, and are based on loosely coupled solution procedures; here a simpler yet very effective approach to implement the log-conformation formulation in a DEVSS-type code for a generalized constitutive model is presented and the equations are solved in a coupled way by Newton's method.