2006 AIChE Annual Meeting
(385d) Experimentally Validated Computations of Heat Transfer in Granular Flow in Rotary Calciners
Authors
We use the discrete element model to simulate flow, mixing, and heat transport in granular flow systems in rotary calciners. Granular flow and heat transport properties of alumina and silica are taken into account in order to develop a fundamental understanding of their effect on calcination performance. Two basic mechanisms of heat transfer are involved: the transient conduction in the particle bed during its contact with the wall and the thermal mixing of hot and cold particles when they interact within the quasi-static and the convective layers. Heat transport processes are simulated accounting for initial material temperature, wall temperature, granular heat capacity, granular heat transfer coefficient, and granular flow properties (cohesion and friction). The calciner model system considered here consists of 20,000 particles of 2 mm diameter in a cylindrical vessel of similar dimensions to those used in the second set of experiments. To minimize the finite size effects the flat end walls are considered frictionless and not participating in heat transfer.
Simulations and experiments show that the rotation speed has minimal impact on heat transfer. As expected, the material with higher thermal conductivity (alumina) warms up faster in experiments and simulations. Similar to experiments, simulations show that the temperatures are higher near the wall and at the cascading layer, while minimum temperature remains at the core of the powder bed. In both simulation and experiments, the granular bed with lower fill fraction heats up faster. Faster mixing is also achieved for the lower fill fraction case, which causes rapid heat transfer from the vessel wall to the granular bed. The granular beds reach the steady state maximum temperature at 654 s, 750 s and 846 s for 20%, 35% and 50% fill fractions. In the simulation, we observe the granular cohesion has no effect on the heat transfer in the calciners. The average wall-particles heat transfer coefficient and the effective thermal conductivity of the granular system are also estimated from the experimental findings.