2006 AIChE Annual Meeting
(217b) High Affinity Fn3 Domains Using Loop Length Diversity and Population Maturation
Oligonucleotides of multiple lengths containing NNB degenerate codons were used to diversify the length and amino acid composition of the BC, DE, and FG loops. The yeast surface display library had 2x10^7 Fn3 clones with four possible lengths of each loop. Clones that bound lysozyme were selected by multiple rounds of fluorescence-activated cell sorting. The enriched population was diversified every two to three rounds by error-prone PCR, loop shuffling, and homologous recombination using a simple one-day protocol. Isolated clones from several stages of the selection were sequenced and characterized in terms of affinity and association and dissociation kinetics.
Multiple clones with picomolar equilibrium dissociation constants were identified. The majority of high affinity clones had BC and DE loops one amino acid shorter than wild-type suggesting that loop length diversity is a valuable element of Fn3 library design. Isolation of such high affinity clones from a relatively small initial library was enabled by affinity maturation via continued selection and diversification as demonstrated by parallel selections without mutagenesis and shuffling. The recurrent population diversification should be advantageous to protein engineering in general.