2006 AIChE Annual Meeting
(102a) Antimicrobial and Hydrophilic Zeolite Coating
Authors
Here, we show that the coating remains highly hydrophilic and antimicrobial after long term leaching in water [2], and after many repeated bacterial inoculations. However, the silver exchanged zeolite A coating showed considerable degradation in mildly acidic and basic solutions. The acid/base stability issues are resolved by using zeolite A/ZSM-5 hybrid coating. In order to achieve all desired properties, we prepared a coating that consisted of zeolite A seeds imbedded within a ZSM-5 matrix. ZSM-5 is a high silica zeolite which can be produced by an in-situ crystallization process using TPAOH as a template. ZSM-5 shows superior acid/base resistance, as well as corrosion resistance [3], and acts to protect the zeolite A imbedded within the coating while the zeolite A seeds provided the hydrophilic and antimicrobial function. Data was obtained for hybrid coatings formed on top of a ZSM-5 pure phase membrane, as well as for hybrid coatings formed directly on the substrate using a template free ZSM-5 synthesis solution. All coatings were shown to be highly hydrophilic and antimicrobial after silver exchange.
References:
1. McDonnel AMP, Beving D, Wang A, Chen W, Yan YS. Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Advanced Functional Materials. 2005;15:336-340.
2. O'Neill C, Beving D, Chen W, Yan YS. Durability of hydrophilic and antimicrobial zeolite coatings under water immersion. AIChe Journal. 2006;52:1157-1161.
3. Cheng XL, Wang ZB, Yan YS. Corrosion-resistant zeolite coatings by in situ crystallization. Electrochemical And Solid State Letters. 2001;4:B23-26.