Breadcrumb
- Home
- Publications
- Proceedings
- 2005 Annual Meeting
- 5th Topical Conference on Nanoscale Science and Engineering
- Nanomaterials and Devices for Energy Applications
- (271g) Proton Conductivity of Microporous Zincosilicates
In our recent work, we have focused on the proton conductivities for a series of zincosilicates. These zincosilicates are microporous, crystalline materials with zeolite-like frameworks. More importantly, they have a high ion density resulting from the need for two counter cations or protons per zinc in the framework as opposed to the one-to-one ratio of counter cation or proton to aluminum in traditional zeolites. Due to these properties, we anticipate that zincosilicate materials, or even a sulfonic acid fuctionalized zincosilicate, may exhibit comparable or higher proton conductivities than their zeolite counterparts.
Here we present proton conductivities, measured using two-electrode impedance spectroscopy, of a series of unfunctionalized zincosilicates. We show conductivities for a series of materials, such as VPI-7, VPI-9, and VPI-10 where the composition is similar (Si/Zn ~4), but the framework structures are different. We also show results from changing the composition, namely the silica to zinc ratio, in several materials with the zeolite *BEA framework. We compare these proton conductivities to previously reported conductivities for aluminosilicate zeolite beta and organic-functionalized zeolite beta to try to elucidate the structural features desired in these materials that yield high proton conductivity.
[1] Holmberg, B.A., et al., Micropor. and Mesopor. Mater., 2005. 80(1-3): p. 347-356.