2nd China Conference on Process Safety
Study in Ann Leak-Detection Method for Natural Gas Pipeline Based on Acoustic Signal
Author
摘要:介绍了输气管道安全检测中以音波信号特征值为泄漏工况判断依据,以人工神经网络为泄漏工况判断标准的泄漏检测方法。首先,对用多种信号处理方法得到的音波信号特征值进行优选。其次,应用不同的人工神经网络对优选出的特征值进行处理,通过实际案例检验网络模态识别的能力,并针对每一个网络的处理效果(网络复杂度,训练时间和模态识别精确度)进行对比分析,从而优选出训练时间短,识别精确度高同时具有多模态识别能力的网络模型。最后将优选出的神经网络与实时音波信号采集系统相结合,编制出输气管道音波法泄漏检测系统软件。
关键词:泄漏检测 信号处理 人工神经网络 软件编制
Abstract Introducing a leak–detection method of natural gas pipeline based on artificial neural network and acoustic signal. Taking the given acoustic characteristics of gas pipeline as different network’s input , comparing the efficiencies and results (including network’s complexity, training time and accuracy of their recognition system )of these networks, optimizing the parameters (training method ,epoch , performance , network’s construct and gradient) and finding out the most appropriate network for leak-finder. Finally, we combine the selected network and characteristics to program the leak detection system of natural gas pipeline.
Keyword leak detection signal processing artificial neural network program